The inhibitor ABIN-2 disrupts the interaction of receptor-interacting protein with the kinase subunit IKKgamma to block activation of the transcription factor NF-kappaB and potentiate apoptosis.

نویسندگان

  • Wei-Kuang Liu
  • Pei-Fen Yen
  • Chia-Yi Chien
  • Ming-Ji Fann
  • Jin-Yuan Su
  • Chen-Kung Chou
چکیده

NF-kappaB (nuclear factor kappaB) proteins are key transcription factors that regulate gene expression in response to various extracellular stimuli. The pathway leading to the activation of NF-kappaB involves a complicated network that includes a number of signalling molecules. The recent identification of a wide range of negative regulators of NF-kappaB has given another layer of complexity in NF-kappaB activation. We and others have previously identified the protein ABIN-2 (A20 binding inhibitor of NF-kappaB 2) as an inhibitor of NF-kappaB activation. In the present paper, we demonstrate that ABIN-2 exerts its inhibitory function by blocking the interaction of RIP (receptor-interacting protein) with the downstream effector IKKgamma, a non-kinase component of the IkappaB (inhibitory kappaB) kinase complex. When overexpressed in cells, ABIN-2 bound to IKKgamma and prevented the association of IKKgamma with RIP. By a deletion mapping, a stretch of 50 amino acids on ABIN-2 is found to be essential for its interaction with IKKgamma. The ABIN-2 mutant that lacked these 50 amino acids did not interact with IKKgamma and, consequently, failed to inhibit NF-kappaB activation. Strikingly, a portion of RIP, which is similar to this 50-residue domain of ABIN-2, is also essential for RIP interaction with IKKgamma. The RIP mutant with deletion of this similar region did not associate with IKKgamma and had substantial reduction of its ability to mediate NF-kappaB activation. Taken together, these conserved 50 residues of ABIN-2 and RIP define a novel structural domain in mediating a key step in the NF-kappaB signalling pathway through the interaction with IKKgamma. Finally, the signalling pathway of NF-kappaB activation is known to promote survival in many cellular events. The mechanism for decision between cell death and survival is under fine regulation. In the present paper, we demonstrated further that the expression of ABIN-2 could promote the RIP-mediated apoptosis by presumably suppressing the anti-apoptotic effect of NF-kappaB.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1.

A20 binding inhibitor of NF-kappaB activation-2, ABIN-2, is a newly identified intracellular protein that interacts with the zinc finger protein A20. ABIN-2 inhibits nuclear factor-kappaB (NF-kappaB) activity and is a possible effector of A20 regulation of NF-kappaB. Although A20 is a potent inhibitor of endothelial apoptosis, the effect of ABIN-2 on apoptosis is not known. ABIN-2 also interact...

متن کامل

The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2.

Tie2 is a receptor tyrosine kinase expressed predominantly in endothelial cells and is essential for blood vessel formation and maintenance. The receptor has potent antiinflammatory effects on endothelial cells, suppressing vascular endothelial growth factor- and tumor necrosis factor-induced expression of leukocyte adhesion molecules and procoagulant tissue factor and inhibiting vascular leaka...

متن کامل

CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways.

Proteins possessing the caspase recruitment domain (CARD) motif have been implicated in pathways leading to activation of caspases or NF-kappaB in the context of apoptosis or inflammation, respectively. Here we report the identification of a novel protein, CARDINAL, that contains a CARD motif and also exhibits a high degree of homology to the C terminus of DEFCAP/NAC, a recently described membe...

متن کامل

Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB.

The double-stranded (ds) RNA-dependent protein kinase (PKR) is a key mediator of antiviral effects of interferon (IFN) and an active player in apoptosis induced by different stimuli. The translation initiation factor eIF-2alpha (alpha subunit of eukaryotic translation initiation factor 2) and IkappaBalpha, the inhibitor of the transcription factor NF-kappaB, have been proposed as downstream med...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 378 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004